Water Use in Geothermal Exploration and Development

Randal B. Peterson
Ormat Technologies, Inc.
September 27, 2014
Disclaimer

Information provided during this presentation may contain statements relating to current expectations, estimates, forecasts and projections about future events that are forward-looking statements as defined in the Private Securities Litigation Reform Act of 1995. These forward-looking statements generally relate to the company’s plans, objectives and expectations for future operations, and are based on management’s current estimates and projections of future results or trends. Actual future results may differ materially from those projected as a result of certain risks and uncertainties.

For a discussion of such risks and uncertainties, please see risk factors as described in the Annual Report on Form 10-K filed with the securities and exchange commission on February 28, 2014.

In addition, during this presentation, statements may be made that include a financial measure defined as non-GAAP financial measures by the Securities and Exchange Commission, such as EBITDA and adjusted EBITDA. These measures may be different from non-GAAP financial measures used by other companies. The presentation of this financial information is not intended to be considered in isolation or as a substitute for the financial information prepared and presented in accordance with GAAP.

Management of Ormat Technologies believes that EBITDA and adjusted EBITDA may provide meaningful supplemental information regarding liquidity measurement that both management and investors benefit from referring to this non-GAAP financial measures in assessing Ormat Technologies’ liquidity, and when planning and forecasting future periods. This non-GAAP financial measures may also facilitate management’s internal comparison to the company’s historical liquidity.
What I’m going to tell you:

• Where water is consumed in exploration and development
• Who might care about your water use
• What these people may be concerned about
• Proactively managing their concerns
• Typical sources of water for your project
• Typical water consumption for exploration and development
• Geothermal fluid for drilling and cementing
• Case studies
Where is water consumed?

- **Exploration:**
 - Dust Suppression
 - Drilling
 - Flow Testing
 - Injection Testing

- **Development**
 - Dust Suppression
 - Construction
 - Cooling
 - Workover
 - Fire Suppression
 - Potable water
 - Reclamation
Who might care about your water use?

- BLM and Others with Environmental Oversight (Think NEPA – CEQA)
- Native Americans
- U.S. Bureau of Reclamation
- State Water Regulatory Agencies
- Farmers and Ranchers
- Non-Governmental Organizations (NGOs)
- Counties and Municipalities
What are their concerns?

• Environmental:
 • Impacts to (depletion or contamination of) fresh surface or ground water
 • Wildlife
 • Streams, springs, meadows, groundwater
 • Municipal supplies
 • Agricultural supplies

• Leverage Point:
 • Project opponents
 • Competitors
 • Speculators
Proactively managing concerns

- Project descriptions for purposes of environmental analysis should include water consumption estimates, sources or water, and water delivery methods
- Discuss alternatives with regulators, water brokers, ranchers, NGOs
- Be prepared to demonstrate that impacts will not be significant, or how impacts will be mitigated
 - Hydrologic studies
 - Baseline monitoring
 - Farm fallowing
 - Spring flow supplementation
Where will I get my water?

- Obtain temporary or permanent water rights and drill wells or create points of diversion (will require regulatory approvals)
- Ranchers (may require regulatory approvals)
- Commercial sources
- Municipal supplies
- Treated municipal waste water
For drilling and construction, consider Temporary Change in Manner of Use or Point of Diversion

• Using agricultural or stock water for other purposes
• Often necessary if purchasing water from rancher or other water rights holder for uses other than those originally permitted
 • Drilling
 • Construction dust suppression
 • Road maintenance
• Intra-basin change in point of diversion – from one well to another
• May not exceed one year
• May be denied if interferes with another water right
• Lender-Borrower or sale agreement required
How Much Water Will I Need?

Exploration
- Well pad and access road construction: 30,000 gpd
- Drilling, full sized wells: 50,000 gpd

Construction
- Plant construction, grading: 50,000 gpd

Typical Project Totals
- Exploration & drilling (assume 7 wells): 40.0 Acre-feet
- Construction & development: 17.6 Acre-feet
- Reclamation: 13.6 Acre-feet

1 Acre-foot = 325,851 gallons
Can I use geothermal fluid for drilling and testing?

- The simple answer: yes
 - If drilling with brine from the same reservoir, it can be argued that it is not consumed, just recirculated
 - Transporting water from another reservoir for drilling adds complications and invites intervention
 - Water quality issues – UIC
 - Consumptive use and water rights
 - NEPA-CEQA
 - Flow testing generally acceptable within the same reservoir
 - Injection testing may require additional authorizations
Can I use geothermal fluid for cementing?

- The simple answer: with care
 - Without knowing exactly what the fluid constituents are, it can be risky. Work with an experienced cementer
 - Temperature, pH, CA, Cl-, TDS can all affect cure time, either accelerating or retarding

<table>
<thead>
<tr>
<th>Property</th>
<th>Sample</th>
<th>Unit</th>
<th>Low</th>
<th>High</th>
<th>Affects on cement slurry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°F):</td>
<td>N/A</td>
<td>°F</td>
<td>40</td>
<td>90</td>
<td>High temp will accelerate, low temp will retard</td>
</tr>
<tr>
<td>pH</td>
<td>7.45</td>
<td></td>
<td>5.5</td>
<td>9</td>
<td>High pH will accelerated, low pH will retard</td>
</tr>
<tr>
<td>Potassium (K⁺):</td>
<td>0</td>
<td>ppm</td>
<td></td>
<td>1500</td>
<td>High Potassium will accelerate</td>
</tr>
<tr>
<td>Hardness (Ca⁺²⁺):</td>
<td>450</td>
<td>ppm</td>
<td></td>
<td>600</td>
<td>High Calcium will accelerate and cause gelation</td>
</tr>
<tr>
<td>Iron (Fe⁺²⁺):</td>
<td>0</td>
<td>ppm</td>
<td></td>
<td>300</td>
<td>High Iron will cause gelation</td>
</tr>
<tr>
<td>Chlorides (Cl⁻):</td>
<td>0</td>
<td>ppm</td>
<td></td>
<td>3000</td>
<td>High Chlorides will accelerate</td>
</tr>
<tr>
<td>Sulfates (SO₄⁻²⁻):</td>
<td>200</td>
<td>ppm</td>
<td></td>
<td>1000</td>
<td>High sulfates will reduce compressive strength</td>
</tr>
<tr>
<td>Total Dissolved Solids:</td>
<td>590</td>
<td>ppm</td>
<td></td>
<td>2000</td>
<td>High TDS will accelerate</td>
</tr>
</tbody>
</table>
What about evaporative cooling?

• No simple answer, each project varies with:
 • Technology; flash or binary
 • Thermal efficiency
 • Geothermal fluid temperature
 • Ambient temperature
 • Ambient humidity
 • Makeup water quality
 • Cooling water chemical treatment plan
 • Cooling tower efficiency and cleanliness
Case Study: Fresh water for cooling

- Ormat’s Galena 1 project; a 20 MW net, air-cooled, binary power plant located in Reno, Nevada
Hybrid cooling:

- Air-cooled technology with evaporative assist during hottest hours of day
- Much lower water consumption than conventional wet cooling
- Can be retrofitted to existing air-cooled power plants
- Can be switched on and off quickly to help balance grid
Fogging System at Work
Water Sources

• Ormat considered using geothermal condensate, tertiary treated effluent, agricultural (surface) water from the Steamboat Ditch
• Economic evaluation of capital and operational costs drove the selection of ditch water
• Ormat purchased water rights in the secondary market; existing water rights holders
• Converting from agricultural to industrial requires additional rights for return flows
• In low water years, water allocation may be restricted
Case Study: Geothermal condensate for cooling
Water source:

- Condensate from flashed geothermal fluid
- Submit application for appropriation of maximum estimated condensate evaporation
- Unlikely to be required to obtain existing water rights, assuming a completely different reservoir/aquifer from fresh water users
- Be prepared to defend appropriation: hydrologic and reservoir models to show no impact to other water rights holders, wildlife, or the environment
- Once granted, project must show consumptive beneficial use by metering production and injection, calculating evaporation
- Extensions for additional time to demonstrate beneficial use often granted
For more information:

- Check recent NEPA – CEQA documents for discussions on water sources and consumption
- Nevada Division of Water Resources: http://water.nv.gov/index.cfm
- California Department of Water Resources: http://www.water.ca.gov/
- Geothermal Energy Association http://geo-energy.org/ search: “cooling water consumption”